首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17466篇
  免费   1584篇
  国内免费   747篇
电工技术   320篇
综合类   371篇
化学工业   6180篇
金属工艺   1395篇
机械仪表   803篇
建筑科学   157篇
矿业工程   74篇
能源动力   831篇
轻工业   2279篇
水利工程   14篇
石油天然气   318篇
武器工业   43篇
无线电   2047篇
一般工业技术   3829篇
冶金工业   325篇
原子能技术   504篇
自动化技术   307篇
  2024年   30篇
  2023年   333篇
  2022年   343篇
  2021年   619篇
  2020年   573篇
  2019年   620篇
  2018年   582篇
  2017年   693篇
  2016年   737篇
  2015年   686篇
  2014年   969篇
  2013年   1250篇
  2012年   1150篇
  2011年   1567篇
  2010年   1034篇
  2009年   1085篇
  2008年   1005篇
  2007年   937篇
  2006年   846篇
  2005年   636篇
  2004年   603篇
  2003年   575篇
  2002年   483篇
  2001年   341篇
  2000年   267篇
  1999年   231篇
  1998年   214篇
  1997年   168篇
  1996年   192篇
  1995年   150篇
  1994年   166篇
  1993年   111篇
  1992年   135篇
  1991年   92篇
  1990年   68篇
  1989年   54篇
  1988年   40篇
  1987年   31篇
  1986年   18篇
  1985年   41篇
  1984年   35篇
  1983年   18篇
  1982年   25篇
  1981年   9篇
  1980年   8篇
  1979年   3篇
  1978年   4篇
  1976年   8篇
  1975年   5篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Germanene, a 2D honeycomb germanium crystal, is grown at graphene/Ag(111) and hexagonal boron nitride (h-BN)/Ag(111) interfaces by segregating germanium atoms. A simple annealing process in N2 or H2/Ar at ambient pressure leads to the formation of germanene, indicating that an ultrahigh-vacuum condition is not necessary. The grown germanene is stable in air and uniform over the entire area covered with a van der Waals (vdW) material. As an important finding, it is necessary to use a vdW material as a cap layer for the present germanene growth method since the use of an Al2O3 cap layer results in no germanene formation. The present study also proves that Raman spectroscopy in air is a powerful tool for characterizing germanene at the interfaces, which is concluded by multiple analyses including first-principles density functional theory calculations. The direct growth of h-BN-capped germanene on Ag(111), which is demonstrated in the present study, is considered to be a promising technique for the fabrication of future germanene-based electronic devices.  相似文献   
82.
83.
Glioblastoma is an extremely difficult clinical indication with very few therapeutic choices. In this study, a nanoparticle is constructed featuring high red absorbance and selective penetration of the blood–brain barrier (BBB) at the tumor site. This nanoparticle can provide timely activation of the adenosine receptor on the BBB to allow self‐passage and accumulation in the tumor. The nanoparticle converts pulsed laser energy into a shockwave via photoacoustic (PA) cavitation to achieve localized mechanical damage and thus yields a precision antitumor effect. In addition to its therapeutic function, the nanoparticle‐mediated PA process can also generate images that provide valuable information regarding tumor depth, size, and vascular morphology to inform treatment planning and monitoring. The results show that the nanoparticles can be efficiently delivered into the glioblastoma via intravenous infusion and this PA shockwave therapy can selectively destroy glioblastoma tumors with no observable side effects on normal tissue.  相似文献   
84.
Understanding the influence of plastic deformation on diffusion is critical for hydrogen embrittlement (HE) study. In this work, thermal desorption spectroscope (TDS), slow strain rate test (SSRT), feritscope, transmission electron microscope (TEM) and TDS model were used to study the relation between plastic deformation and hydrogen diffusion, aiming at unambiguously elucidating the effect of plastic deformation on hydrogen diffusion of austenitic stainless steel, S30408. An effective method was developed to deduce apparent hydrogen diffusion coefficient of austenitic stainless steel in this paper. Results indicate apparent hydrogen diffusion coefficient decreases firstly and then increases with increasing plastic deformation at room temperature. Hydrogen diffusion effected by plastic deformation is a complicated process which is suggested to be divided into two processes controlled by dislocation and strain-induced martensite, respectively, and the transition point is about 20% strain demonstrated by experiments in this case.  相似文献   
85.
86.
Cerium malate (CeMal) was tested as a corrosion inhibitor for AA2024-T3 in this work. Corrosion inhibition on bare AA2024-T3 indicated that the inhibiting effect was a result of the synergistic effect of cerium cations and maleic anions. The corrosion of AA2024-T3 was stagnated by greatly reducing the corrosion current when CeMal was present in NaCl solutions. CeMal was adsorbed on the surface of AA2024-T3 forming a protective film in the initial stage. Then, cerium cations transformed to cerium oxide/hydroxides, precipitating on the cathode sites to inhibit the further corrosion. The electrochemical impedance spectra results of the sol-gel coatings proved that CeMal was an effective corrosion inhibitor in the sol-gel coatings to provide corrosion protection for AA2024-T3.  相似文献   
87.
This study deals with the utility of mini spray dryer process to improve the dispersibility, of graphene oxide(GO) and its application for high-performance supercapacitor. Initially, the neutral solution of GO was obtained using the modified Hummer's method. After this, the prepared GO solution was processed by mini spray dryer to obtain a more purified, lighter, and dispersed form of GO which is named as spray dryer processed GO (SPGO). The SPGO thus obtained showed excellent dispersibility behavior with various solvents, which is not found in case of conventional oven drying. Furthermore, utility of SPGO and its reduced form (r-SPGO) for supercapacitor applications have been investigated. Results obtained from the cyclic voltammetry(CV) analysis, impedance, and charge-discharge behavior of supercapacitor fabricated using r-SPGO shows enhanced features. Therefore, the simple spray dried GO and its reduced form, that is, r-SPGO can be utilized as a potential candidate for the supercapacitor application. Herein, as synthesized SPGO exhibited the specific capacitance of 12.07 and 37.6 F/g with PVA-H3PO4 and 1 mol/L H3PO4, respectively, at a scan rate of 5 mV/s. On the other hand, reduced form of SPGO, that is, r-SPGO showed the specific capacitance of 27.16 and 230 F/g with PVA-H3PO4 and 1 mol/L H3PO4, respectively.  相似文献   
88.
The Yaozhou kiln complex is a representative production center of ancient northern China, famous for the celadon production. In this work, bubbles, glassy matrix and residual crystals of celadon glazes produced from the Tang to Yuan Dynasty were analyzed by using optical microscopy, Raman spectroscopy and scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS). The results revealed that the Song, Jin and Yuan productions present bigger bubble and higher area ratios of the Si-O bending over stretching modes than the Tang and Wudai productions. This is consistent with firings at higher temperatures during Song, Jin and Yuan Dynasties. It is also in agreement with the historical studies, which revealed the change from wood-firing to coal-firing during Song Dynasty. The observation of calcium phosphate in Yaozhou productions indicated that the glaze ash had been used. No iron-based particle was identified by Raman spectroscopy in the glazes of all periods. The green color is certainly due to iron ion dispersed in the glassy matrix. Our study also confirmed no significant change in glaze raw materials used for Yaozhou productions from Tang to Yuan Dynasty.  相似文献   
89.
In this work, the grain boundaries composition of the polycrystalline CaCu3Ti4O12 (CCTO) was investigated. A Focused Ion Beam (FIB)/lift-out technique was used to prepare site-specific thin samples of the grain boundaries interface of CCTO ceramics. Scanning transmission electron microscopy (STEM) coupled with energy dispersive X-ray spectrometry (EDXS) and Electron Energy Loss Spectroscopy (EELS) systems were used to characterize the composition and nanostructure of the grain and grain boundaries region. It is known that during conventional sintering, discontinuous grain growth occurs and a Cu-rich phase appears at grain boundaries. This Cu-rich phase may affect the final dielectric properties of CCTO but its structure and chemical composition remained unknown. For the first time, this high-resolution FIB-TEM-STEM study of CCTO interfacial region highlights the composition of the phases segregated at grain boundaries namely CuO, Cu2O and the metastable phase Cu3TiO4.  相似文献   
90.
《Ceramics International》2020,46(8):11508-11514
Nanopowders of holmium zirconate (Ho2Zr2O7) synthesised through carbon neutral sol-gel method were pressed into pellets and individually sintered for 2 h in a single step sintering (SSS) process from 1100 °C to 1500 °C at 100 °C interval and in a two step sintering (TSS) process at (I) −1500 °C for 5 min followed by (II) - 1300 °C for 96 h. Relative density of each of the sintered pellet was determined using the Archimedes’ technique and the theoretical density was calculated from crystal structure data. Grain size was obtained from SEM micrographs using ImageJ. Pellets processed by TSS have been found to be denser (98 %) with less grain growth (1.29 μm) as compared to the pellets processed using SSS process. Ionic conductivity of Ho2Zr2O7 pellets sintered by two different processes was measured using ac impedance spectroscopy technique over the temperature range of 350 °C–750 °C in the frequency range of 100 mHz–100 MHz for both heating and cooling cycles. The temperature dependence of bulk (2.67⨯10−3 Scm−1) and grain boundary (2.50⨯10−3 Scm−1) conductivities of Ho2Zr2O7 prepared by TSS process are greater than those processed by SSS process suggesting the strong influence of processing conditions and grain size. Results of this study, indicates that the TSS is the preferable route for processing the holmium zirconate as it can be sintered to exceptionally high densities at lower temperature, exhibits less grain growth and enhanced ionic conductivity compared with the samples processed by SSS process. Hence, holmium zirconate can be considered as a promising new oxide ion conducting solid electrolyte for intermediate temperature SOFC applications between 350 °C and 750 °C temperature range.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号